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Scaling of resonance frequency for strong
injection-locked lasers
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It has been shown that strong optical injection locking can significantly enhance the resonance frequency of
semiconductor lasers. In this Letter, we describe the trade-off between the maximum resonance frequency
enhancement and the quality factor �Q� of the lossless laser cavity and show that the time–bandwidth prod-
uct (product of photon lifetime and maximum resonance frequency) is equal to one half the square root of the
external power injection ratio. The theoretical model agrees well with our experimental data. © 2007 Op-
tical Society of America
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Optical injection locking (OIL) of semiconductor la-
sers has come under increasing interest. Under
strong optical injection, the resonance frequency of
semiconductor lasers can be greatly enhanced, over-
coming the fundamental limit of relaxation oscilla-
tion in free-running lasers. Both theoretical predic-
tions and experimental demonstrations have been
reported [1–3]. It has been shown that the maximum
resonance frequency enhancement is proportional to
the square root of the injection ratio. However, how
the resonance frequency scales with the laser cavity
design has not been explored. Such a scaling law is
important because it provides a guideline for optimiz-
ing the laser to achieve the maximum possible reso-
nance frequency.

In this Letter, we derive a simple expression for
the maximum resonance frequency enhancement
���R,max� and utilize it as a figure of merit to compare
injection-locked systems with a wide range of cavity
lengths of slave lasers, from vertical-cavity surface-
emitting lasers (VCSELs) to edge-emitting lasers
(EELs) (Fig. 1). We show that ��R,max is inversely
proportional to the quality factor �Q� of the lossless
laser cavity and develop a time–bandwidth product
that defines a trade-off between cavity Q and reso-
nance frequency enhancement.

A common injection-locking model solves a set of
three lumped-element differential equations that in-
clude the slave laser’s field magnitude, phase, and
carrier density. The field amplitude and phase equa-
tions are [4,5]
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where A�t� and ��t� are the internal slave field am-
plitude and phase, respectively; g is the linearized
gain; N�t� is the carrier number; Nth is the threshold

carrier number; � is the coupling coefficient; Ainj is
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the magnitude of the injected field; � is the linewidth
enhancement parameter; and �� is the detuning fre-
quency. In the literature, the injection ratio, one of
the primary parameters in injection locking, is typi-
cally defined as

Rint = �Ainj

A0
�2

=
Pinj,int

P0
, �2�

where A0 is the internal slave free-running field mag-
nitude, Pinj,int is the internal injected power, and P0 is
the internal slave free-running power. Note that Ainj
and A0 are the injected and free-running fields inside
the slave laser cavity, which are not empirically mea-
surable values. Here, we define an external injection
ratio, based on experimentally measurable values:

Rext =
Pinj,ext

Pout
, �3�

where Pinj,ext is the injected power incident on the
slave facet and Pout is the output power of the free-
running slave.

We can relate the internal and external injection
ratios by defining the power reflectivity of the injec-
tion facet as r:

Rint

Rext
=

�1 − r�2

r
. �4�

This relates the internal injection ratio commonly
used in theoretical papers with the external injection

Fig. 1. Injection locking of various laser structures: (a)

VCSEL, (b) Fabry–Perot, (c) DFB.
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ratio, which is easily determinable by empirical
methods. Note also that Eq. (4) is usable for
reflection-type injection locking experiments and can
be modified for transmission-type OIL. Equation (4)
is plotted versus mirror power reflectivities in Fig. 2,
which shows that for extremely high mirror reflec-
tivities (i.e., VCSELs), much of the incident light does
not transmit into the cavity. For a typical EEL with
air facets �r�0.3�, this ratio is close to unity. How-
ever, for a VCSEL with r=0.99, the value is �10−4.

The coupling coefficient, �, for injection-locked la-
sers has been shown to be important for determining
the efficiency of the injection process. It is typically
defined as [7]

� =
1

�rt
=

vg

2L
, �5�

where �rt is the cavity round-trip time, vg is the cavity
group velocity, and L is the cavity length. Physically,
it means that the injected light must distribute itself
across the entire laser cavity. Therefore, longer cavi-
ties have poorer injection efficiencies; the longer cav-
ity dilutes the injection’s effects. A VCSEL with L
=2 �m versus an EEL with L=500 �m would benefit
from a � that is 250 times larger than its EEL coun-
terpart.

The resonance frequency enhancement is [5,6]

��R = − ��Rint sin �0, �6�

where �0 is the steady-state phase difference be-
tween master and slave laser fields. The resonance
frequency enhancement reaches its maximum when
�0=−� /2, which occurs at the positive detuning edge
of the stable locking range [7]:

− ��Rint�1 + �2 	 �� 	 ��Rint. �7�

Using Eqs. (5) and (6), and the upper bound of Eq.
(7), we obtain the maximum resonance frequency en-
hancement for a given injection ratio:

��R,max = ��Rint =
vg

2L
�Rint. �8�

This equation is dependent only on the cavity round-
trip time and the injection ratio. Equation (8) sug-

Fig. 2. Ratio of internal and external injection ratios for
different mirror reflectivities.
gests that high resonance frequency enhancement
would favor short cavity lasers. However, one must
remember that short cavity lasers require high re-
flectivity mirrors, which reduces the internal injec-
tion ratio as shown in Fig. 2. To find the trade-off be-
tween cavity length and mirror reflectivity, we use
Eq. (4) to relate Eq. (8) to the external injection ratio:

��R,max =
vg

2L
·

1 − r

�r
�Rext. �9�

Note that the quality factor of a loss-free Fabry–
Perot cavity (coupling Q) with mirror reflectivities of
r and a cavity length of L is [8]

Q 	
�0

�1/2
=

�0L

vg
·

�r

1 − r
, �10�

where �0 is the laser frequency and �1/2 is the full
width at half-maximum bandwidth of the cavity reso-
nance; ��R,max can be simplified to

��R,max =
�0

2Q
�Rext. �11�

This equation removes the dependency of the reso-
nance frequency enhancement from r and L and re-
lates it to a single cavity parameter, Q. It also states
that to obtain a high resonance frequency, we should
design a laser cavity with a low Q. Interestingly, a
typical EEL with L=500 �m and r=0.3 has the same
Q �=6.7
103� as a typical VCSEL with L=2 �m and
r=0.995. Equation (11) states that both lasers would
have the same maximum resonance frequency en-
hancement. The VCSEL’s high coupling coefficient, �,
is compensated by the decreased ratio of light trans-
mitted into the cavity. To increase the maximum
resonance frequency, lasers with lower Q should be
designed. Figure 3 shows the calculated frequency re-
sponses of two injection-locked lasers with different
Q. For a given injection ratio, the laser with a lower
Q [Fig. 3(b)] will attain a higher resonance frequency.
One must keep in mind that, ultimately, the practical
limits of resonance frequency enhancement may re-

Fig. 3. (Color online) Frequency responses for two differ-
ent lasers: (a) Q=13,320, (b) Q=3330. The curves in each
set are the maximum resonance frequency at a given injec-
tion ratio. Light to dark curves correspond to Rext=−10, −5,
0, 5, and 10 dB, respectively. Dotted curves correspond to

the free-running response.
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sult from other effects, i.e., when the increased de-
tuning causes locking to prefer the next cavity mode.
This may be farther away for VCSELs than
distributed-feedback (DFB) lasers, owing to the
VCSEL’s shorter effective cavity length.

To validate the theory, we fit Eq. (11) to our experi-
mental data (Fig. 4) by using DFB lasers with a
�gratingL product of 
4. We maximized the resonance
frequency at each injection ratio value. It should be
noted that ��R,max is calculated from the free-
running resonance frequency, �R0, and the enhanced
resonance frequency, �R. The two can be related
through [6,9]

�R
2 = �R0

2 + ��R
2 . �12�

This is a more accurate prediction than previous lit-
erature [5]. It is derived from linearized rate equa-
tions [9] and better models the fact that the locked la-
ser returns to its free-running resonance frequency
under negative detuning or low-injection regimes.
For each laser, the ��R,max versus Rext curve fits with
a line of log–log slope 1/2, agreeing well with the pre-
diction by Eq. (11). DFB1 fits well over a span of
30 dB. The extracted Q values of DFB1 and DFB2
are 4660 and 14,100, respectively. From the optical
spectrum, the stop-band widths of the two DFBs
were estimated to be 1 and 2 nm, respectively. From
this, the calculated Q values, assuming no facet re-
flectivity, are 5570 and 12,600, respectively [8]. The
maximum resonance frequency enhancement based
on the calculated Qs is plotted in Fig. 4, showing good
agreement and the general trend that lower Q factor
results in higher maximum resonance frequencies.

Using Eqs. (10) and (11) and the relationship be-
tween �1/2 and photon lifetime ��c� of the cavity mir-
rors, �1/2=1/�c, we obtain

�c · ��R,max =
1

2
�Rext. �13�

Equation (13) can be seen as a time–bandwidth prod-

Fig. 4. (Color online) Comparison of theory with experi-
mental data for maximum resonance frequency enhance-
ment. The points are sets of ��R,max at different injection
ratios, for two different lasers. Solid lines, fits of Eq. (11);
dotted lines, calculated ��R,max based on DFB stop-band
width.
uct, which increases with higher injection ratio. This
defines a trade-off between high resonance frequency
and low threshold currents.

We can also use Eq. (11) to delineate the upper
edge of the locking range. Interestingly, Adler [10]
and similarly Slater [11] cite an identical boundary
on the locking range of injection-locked electronic os-
cillators:

�� =
�0

2Q
�Pi

P0
. �14�

The similarity between electronic and optical oscilla-
tor theory suggests that the theory is universal to all
types of driven nonlinear oscillators, including differ-
ent optical cavity designs, and that cavity Q is the
main factor affecting the resonance frequency for a
given injection ratio.

In summary, we have derived a universal formula
for the maximum resonance frequency enhancement
of an injection-locked semiconductor laser in terms of
the quality factor �Q� and the external injection ratio.
The enhancement increases with the square root of
the external injection ratio but decreases with Q.
With this model, we find that typical lasers of differ-
ent lengths have comparable performance for the
same external injection ratio, provided they have
similar Q. Finally, we show that the time–bandwidth
product of injection-locked lasers is equal to one half
of the square root of the external injection ratio. The
results presented here clearly identify the design
trade-off between the threshold of the laser and the
maximum resonance frequency enhancement, and
they can serve as a universal guideline to optimize
the performance of injection-locked lasers.
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